"Эффект бобочки" смотрели многие; физики, биологи, математики (особенно) и тп должны были это затрагивать на занятиях. Меня это волнует уже лет 7 (не смотря на то, что я "гуманитарий"), вот решила рискнуть и попробовать поднять эту темку на форуме.
Немного об этой теории:
"ХАОСА ТЕОРИЯ, раздел математики, изучающий кажущееся случайным или очень сложное поведение детерминированных динамических систем. Динамическая система – это такая система, состояние которой меняется во времени в соответствии с фиксированными математическими правилами; последние обычно задаются уравнениями, связывающими будущее состояние системы с текущим. Такая система детерминирована, если эти правила не включают явным образом элемента случайности.
Вплоть до 1960-х годов многим казалось естественным полагать, что динамическая система, описываемая простыми детерминистическими уравнениями, должна вести себя относительно просто, хотя уже более столетия было известно, что это верно лишь в некоторых весьма специальных случаях, таких, как Солнечная система. Однако к 1980 математики и естествоиспытатели обнаружили, что хаос вездесущ.
Пример хаотического поведения из повседневной жизни – движение жидкости в миксере. Это устройство подчиняется простым механическим законам: его нож-смеситель вращается с постоянной скоростью, и взаимодействие жидкости с ножом внутри миксера можно описать простыми детерминистическими уравнениями. Однако возникающее при этом движение жидкости весьма сложно. Ее соседние области рассекаются ножом и разделяются, а отдаленные области могут сближаться. Короче говоря, жидкость перемешивается – для этого миксеры и предназначены.
Выражение «теория хаоса» используется преимущественно в популярной литературе. Специалисты же рассматривают эту дисциплину как раздел теории динамических систем.
Основные принципы. Для изучения хаоса используют общие математические принципы и компьютерное моделирование. Фундаментальной характеристикой всякой динамической системы является итерация, т.е. результат повторного (многократного) применения одного и того же математического правила к некоторому выбранному состоянию. Состояние обычно описывается числом или набором чисел, но это может быть также геометрическая фигура или конфигурация. Например, пусть правилом будет «разделить на два». Начав с исходного состояния, задаваемого числом 1, это правило дает итерации 1/2, 1/4, 1/8,..., образующие очевидную закономерную последовательность. Правило «возвести в квадрат и вычесть единицу», примененное к 0, дает последовательность –1, 0, –1, 0,..., которая циклически и неограниченно скачет между числами 0 и -1. Однако правило «возвести в квадрат, удвоить и затем вычесть единицу», если начать применять его, скажем, к значению 0,1, порождает последовательность чисел -0,98, 0,92, 0,69, -0,03,..., в которой не удается заметить никакой очевидной закономерности.
Основным понятием теории хаоса является аттрактор, т.е. то поведение, к которому в конце концов приходит или в пределе стремится система. Аттракторами для трех описанных выше систем являются: единственное число 0; пара чисел (0, -1); весь интервал чисел между –1 и 1. Динамика в этих трех случаях соответственно стационарная, периодическая и хаотическая. Хаотический аттрактор обладает скрытой структурой, которая часто становится явной после графического представления итераций. Состояние динамической системы – это набор чисел, которые можно интерпретировать как координаты изображающей его точки в некотором фазовом пространстве. Когда состояние системы меняется, эта точка движется. Для стационарного аттрактора движущаяся точка стремится к фиксированному положению, а для периодического аттрактора она циклически проходит через фиксированную последовательность положений. В случае хаотического аттрактора движущаяся точка образует более сложную конфигурацию с очень хитроумной, многослойной структурой. Такие конфигурации называют фракталами; этот термин был введен в 1970 Б.Мандельбротом. Его работы впоследствии стимулировали огромное количество исследований по фрактальной геометрии.
Важной чертой хаотической динамики является ее непредсказуемость. Представим себе две частички порошка, находящиеся рядом друг с другом в жидкости внутри миксера. После включения миксера эти две частички недолго останутся рядом; они быстро разойдутся в разные стороны и вскоре начнут двигаться независимо. Подобным же образом, если дважды запустить хаотическую систему из очень близких начальных состояний, ее поведение в этих двух случаях быстро станет совершенно непохожим. Это означает, что на больших временных интервалах хаотические системы непредсказуемы. Малейшая погрешность измерения начального состояния быстро растет, и предсказание будущего состояния становится все более неточным. Однако, в отличие от случайной системы, краткосрочное прогнозирование здесь возможно.
История вопроса. Понятие хаоса не было в явном виде сформулировано до 1960-х годов, но его истоки можно проследить начиная с последнего десятилетия 19 в., когда появилась удостоенная премии работа французского математика А.Пуанкаре о движении в Солнечной системе. Двумя столетиями раньше Ньютон установил закон всемирного тяготения, из которого вывел, что движение двух притягивающихся тел в отсутствие других сил описывается просто: каждое из них перемещается относительно их общего центра масс по одному из конических сечений – окружности, эллипсу, параболе, гиперболе или прямой. Для трех или большего числа тел, однако, нельзя найти подобного простого решения, и Пуанкаре показал, что эта трудность вызвана не недостатком человеческой изобретательности, а свойствами, внутренне присущими динамике многих тел. Он установил, что даже в ограниченной задаче трех тел, масса одного из которых пренебрежимо мала, возможно столь сложное движение, что его нельзя описать никакой математической формулой.
В 1926–1927 голландский инженер Б.Ван-дер-Пол сконструировал электронную схему, соответствующую математической модели сердечных сокращений. Он обнаружил, что при определенных условиях возникающие в схеме колебания были не периодическими, как при нормальном сердцебиении, а нерегулярными. Его работа получила серьезное математическое обоснование в годы Второй мировой войны, когда Дж.Литтлвуд и М.Картрайт исследовали принципы радиолокации. В начале 1960-х годов американский математик С.Смейл попытался построить исчерпывающую классификацию типичных разновидностей поведения динамических систем. Поначалу он предполагал, что можно обойтись различными комбинациями периодических движений, но вскоре понял, что возможно значительно более сложное поведение. В частности, он подробнее исследовал открытое Пуанкаре сложное движение в ограниченной задаче трех тел, упростив геометрию и получив при этом систему, известную ныне как «подкова Смейла». Он доказал, что такая система, несмотря на ее детерминированность, проявляет некоторые черты случайного поведения. Другие примеры подобных явлений были разработаны американской и российской школами в теории динамических систем, причем особенно важным оказался вклад В.И.Арнольда. Так начала возникать общая теория хаоса. Сам термин «хаос» ввели Дж.Йорке и Т.Ли в 1975 в краткой статье, посвященной обсуждению некоторых результатов исследований российской школы.
Немного об этой теории:
"ХАОСА ТЕОРИЯ, раздел математики, изучающий кажущееся случайным или очень сложное поведение детерминированных динамических систем. Динамическая система – это такая система, состояние которой меняется во времени в соответствии с фиксированными математическими правилами; последние обычно задаются уравнениями, связывающими будущее состояние системы с текущим. Такая система детерминирована, если эти правила не включают явным образом элемента случайности.
Вплоть до 1960-х годов многим казалось естественным полагать, что динамическая система, описываемая простыми детерминистическими уравнениями, должна вести себя относительно просто, хотя уже более столетия было известно, что это верно лишь в некоторых весьма специальных случаях, таких, как Солнечная система. Однако к 1980 математики и естествоиспытатели обнаружили, что хаос вездесущ.
Пример хаотического поведения из повседневной жизни – движение жидкости в миксере. Это устройство подчиняется простым механическим законам: его нож-смеситель вращается с постоянной скоростью, и взаимодействие жидкости с ножом внутри миксера можно описать простыми детерминистическими уравнениями. Однако возникающее при этом движение жидкости весьма сложно. Ее соседние области рассекаются ножом и разделяются, а отдаленные области могут сближаться. Короче говоря, жидкость перемешивается – для этого миксеры и предназначены.
Выражение «теория хаоса» используется преимущественно в популярной литературе. Специалисты же рассматривают эту дисциплину как раздел теории динамических систем.
Основные принципы. Для изучения хаоса используют общие математические принципы и компьютерное моделирование. Фундаментальной характеристикой всякой динамической системы является итерация, т.е. результат повторного (многократного) применения одного и того же математического правила к некоторому выбранному состоянию. Состояние обычно описывается числом или набором чисел, но это может быть также геометрическая фигура или конфигурация. Например, пусть правилом будет «разделить на два». Начав с исходного состояния, задаваемого числом 1, это правило дает итерации 1/2, 1/4, 1/8,..., образующие очевидную закономерную последовательность. Правило «возвести в квадрат и вычесть единицу», примененное к 0, дает последовательность –1, 0, –1, 0,..., которая циклически и неограниченно скачет между числами 0 и -1. Однако правило «возвести в квадрат, удвоить и затем вычесть единицу», если начать применять его, скажем, к значению 0,1, порождает последовательность чисел -0,98, 0,92, 0,69, -0,03,..., в которой не удается заметить никакой очевидной закономерности.
Основным понятием теории хаоса является аттрактор, т.е. то поведение, к которому в конце концов приходит или в пределе стремится система. Аттракторами для трех описанных выше систем являются: единственное число 0; пара чисел (0, -1); весь интервал чисел между –1 и 1. Динамика в этих трех случаях соответственно стационарная, периодическая и хаотическая. Хаотический аттрактор обладает скрытой структурой, которая часто становится явной после графического представления итераций. Состояние динамической системы – это набор чисел, которые можно интерпретировать как координаты изображающей его точки в некотором фазовом пространстве. Когда состояние системы меняется, эта точка движется. Для стационарного аттрактора движущаяся точка стремится к фиксированному положению, а для периодического аттрактора она циклически проходит через фиксированную последовательность положений. В случае хаотического аттрактора движущаяся точка образует более сложную конфигурацию с очень хитроумной, многослойной структурой. Такие конфигурации называют фракталами; этот термин был введен в 1970 Б.Мандельбротом. Его работы впоследствии стимулировали огромное количество исследований по фрактальной геометрии.
Важной чертой хаотической динамики является ее непредсказуемость. Представим себе две частички порошка, находящиеся рядом друг с другом в жидкости внутри миксера. После включения миксера эти две частички недолго останутся рядом; они быстро разойдутся в разные стороны и вскоре начнут двигаться независимо. Подобным же образом, если дважды запустить хаотическую систему из очень близких начальных состояний, ее поведение в этих двух случаях быстро станет совершенно непохожим. Это означает, что на больших временных интервалах хаотические системы непредсказуемы. Малейшая погрешность измерения начального состояния быстро растет, и предсказание будущего состояния становится все более неточным. Однако, в отличие от случайной системы, краткосрочное прогнозирование здесь возможно.
История вопроса. Понятие хаоса не было в явном виде сформулировано до 1960-х годов, но его истоки можно проследить начиная с последнего десятилетия 19 в., когда появилась удостоенная премии работа французского математика А.Пуанкаре о движении в Солнечной системе. Двумя столетиями раньше Ньютон установил закон всемирного тяготения, из которого вывел, что движение двух притягивающихся тел в отсутствие других сил описывается просто: каждое из них перемещается относительно их общего центра масс по одному из конических сечений – окружности, эллипсу, параболе, гиперболе или прямой. Для трех или большего числа тел, однако, нельзя найти подобного простого решения, и Пуанкаре показал, что эта трудность вызвана не недостатком человеческой изобретательности, а свойствами, внутренне присущими динамике многих тел. Он установил, что даже в ограниченной задаче трех тел, масса одного из которых пренебрежимо мала, возможно столь сложное движение, что его нельзя описать никакой математической формулой.
В 1926–1927 голландский инженер Б.Ван-дер-Пол сконструировал электронную схему, соответствующую математической модели сердечных сокращений. Он обнаружил, что при определенных условиях возникающие в схеме колебания были не периодическими, как при нормальном сердцебиении, а нерегулярными. Его работа получила серьезное математическое обоснование в годы Второй мировой войны, когда Дж.Литтлвуд и М.Картрайт исследовали принципы радиолокации. В начале 1960-х годов американский математик С.Смейл попытался построить исчерпывающую классификацию типичных разновидностей поведения динамических систем. Поначалу он предполагал, что можно обойтись различными комбинациями периодических движений, но вскоре понял, что возможно значительно более сложное поведение. В частности, он подробнее исследовал открытое Пуанкаре сложное движение в ограниченной задаче трех тел, упростив геометрию и получив при этом систему, известную ныне как «подкова Смейла». Он доказал, что такая система, несмотря на ее детерминированность, проявляет некоторые черты случайного поведения. Другие примеры подобных явлений были разработаны американской и российской школами в теории динамических систем, причем особенно важным оказался вклад В.И.Арнольда. Так начала возникать общая теория хаоса. Сам термин «хаос» ввели Дж.Йорке и Т.Ли в 1975 в краткой статье, посвященной обсуждению некоторых результатов исследований российской школы.